3.3.34 \(\int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx\) [234]

Optimal. Leaf size=124 \[ \frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \]

[Out]

-(A+C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))+(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*
EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d-(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)
/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 124, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4170, 3872, 3856, 2719, 2720} \begin {gather*} -\frac {(A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {(A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])),x]

[Out]

((3*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - ((A - C)*Sqrt[Cos[c + d*x]
]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) - ((A + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*(a + a*Se
c[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4170

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*b
*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x
] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {A+C \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \, dx &=-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\int \frac {-\frac {1}{2} a (3 A+C)+\frac {1}{2} a (A-C) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{a^2}\\ &=-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {(A-C) \int \sqrt {\sec (c+d x)} \, dx}{2 a}+\frac {(3 A+C) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a}\\ &=-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}-\frac {\left ((A-C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{2 a}+\frac {\left ((3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a}\\ &=\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A-C) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 6.48, size = 795, normalized size = 6.41 \begin {gather*} -\frac {\sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right )}{d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}-\frac {\sqrt {2} C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \cos (c+d x) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {7}{4};-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right )}{3 d (A+2 C+A \cos (2 c+2 d x)) (a+a \sec (c+d x))}-\frac {2 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sin (c)}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {\sec (c+d x)} (a+a \sec (c+d x))}+\frac {2 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sec \left (\frac {c}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \sin (c)}{d (A+2 C+A \cos (2 c+2 d x)) \sqrt {\sec (c+d x)} (a+a \sec (c+d x))}+\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A+C \sec ^2(c+d x)\right ) \left (-\frac {2 (2 A+C+A \cos (2 c)) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{d}+\frac {4 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {8 A \cos (c) \sin (d x)}{d}+\frac {4 (A+C) \tan \left (\frac {c}{2}\right )}{d}\right )}{(A+2 C+A \cos (2 c+2 d x)) \sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])),x]

[Out]

-((Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^
2*Cos[c + d*x]*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1
[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + C*Sec[c + d*x]^2))/(d*E^(I*d*x)*(A + 2*C + A*Cos[2*c + 2*
d*x])*(a + a*Sec[c + d*x]))) - (Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c
 + d*x))]*Cos[c/2 + (d*x)/2]^2*Cos[c + d*x]*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E
^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]*(A + C*Sec[c + d*x]^2))/(3*d*E^(I
*d*x)*(A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])) - (2*A*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[
c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sin[c])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[
Sec[c + d*x]]*(a + a*Sec[c + d*x])) + (2*C*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x
)/2, 2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sin[c])/(d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + a*Se
c[c + d*x])) + (Cos[c/2 + (d*x)/2]^2*(A + C*Sec[c + d*x]^2)*((-2*(2*A + C + A*Cos[2*c])*Cos[d*x]*Csc[c/2]*Sec[
c/2])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d + (8*A*Cos[c]*Sin[d*x])/d + (4*(
A + C)*Tan[c/2])/d))/((A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x]))

________________________________________________________________________________________

Maple [A]
time = 3.34, size = 245, normalized size = 1.98

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \left (A \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+3 A \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+C \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A +2 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A -C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(245\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*(A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))
-C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+(2*A+2*C)*sin(1/2*d*x+1/2*c)
^4+(-A-C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(
1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.71, size = 239, normalized size = 1.93 \begin {gather*} -\frac {2 \, {\left (A + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

-1/2*(2*(A + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(I*A - I*C)*cos(d*x + c) + sqrt(2)*(I*A - I*C))*wei
erstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - (sqrt(2)*(-I*A + I*C)*cos(d*x + c) + sqrt(2)*(-I*A +
I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*(3*I*A + I*C)*cos(d*x + c) + sqrt(2
)*(3*I*A + I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*
(-3*I*A - I*C)*cos(d*x + c) + sqrt(2)*(-3*I*A - I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*
x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c) + a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {A}{\sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C \sec ^{2}{\left (c + d x \right )}}{\sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))/sec(d*x+c)**(1/2),x)

[Out]

(Integral(A/(sec(c + d*x)**(3/2) + sqrt(sec(c + d*x))), x) + Integral(C*sec(c + d*x)**2/(sec(c + d*x)**(3/2) +
 sqrt(sec(c + d*x))), x))/a

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/((a*sec(d*x + c) + a)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(1/2)),x)

[Out]

int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________